
 P2P proxy/cache  

A hybrid P2P/CDN networking approach eliminating the problems of P2P 
through caching/relaying trackerless BitTorrent traffic 

 
Ivan Klimek 

 

Computer Networks Laboratory, 
Department of Computers and Informatics, 

Technical University of Košice, Letná 9, 041 20 Košice, 
Slovak Republic. 

Tel: +421-902-152873 

E-mail: Ivan.Klimek@cnl.sk 
 

ABSTRACT 

This paper describes the addition of 
trackerless torrent caching to our existing P2P 
proxy cache. Trackerless torrents represent 
the next evolutionary step of the BitTorrent 
protocol; they eliminate the need for 
centralized trackers which in fact are the weak 
point of the whole technology. Further, it will be 
shown that our approach enables total user 
anonymity. This two mentioned features 
together with the massive reduction of traffic 
behind the proxy achieved through avoiding 
redundancy, solves practically all the problems 
of P2P without the need to change the used 
technology, but just add features transparently 
above it. The motivations behind caching of 
P2P traffic won’t be described in this paper as 
there were already studied deeply [1]. 
 

1 TRACKERLESS TORRENTS 
 
The original BitTorrent protocol was not 
completely decentralized; it relied purely on the 
centralized control servers named trackers for 
coordination of the peer cloud. These trackers 
represented a single point of failure; their take 
down would render the whole technology 
useless. Also, this trackers have to be run by 
someone, this person(s) are exposed to 
possible legal actions against them even that 
the tracker itself doesn't hold any illegal 
content [2]. Because of these factors, the need 
to develop a decentralized alternative to 
trackers arose. Currently, there are three 
"trackerless" peer-discovery technologies 
being used: 
  

 Distributed Hash Table (DHT) 
 Peer Exchange (PEX)  
 Local peer discovery 

 
These trackerless peer discovery methods 
were not primarily developed to fully replace 

trackers, but just to add more peers resp. 
represent a fallback option. 
 
1.1 Distributed Hash Table 
 
Distributed hash tables (DHTs) are a class of 
decentralized distributed systems that provide 
a lookup service similar to a hash table: (key, 
value) pairs are stored in the DHT, and any 
participating node can efficiently retrieve the 
value associated with a given key. 
Responsibility for maintaining the mapping 
from keys to values is distributed among the 
nodes, in such a way that a change in the set 
of participants causes a minimal amount of 
disruption. This allows DHTs to scale to 
extremely large numbers of nodes and to 
handle continual node arrivals, departures, and 
failures. [3]  
Because we are focusing on the BitTorrent 
protocol, we will specify its DHT 
implementation:  
Kademlia is a distributed hash table for 
decentralized peer to peer computer networks 
designed by Petar Maymounkov and David 
Mazières [4]. It specifies the structure of the 
network and the exchange of information 
through node lookups. Kademlia nodes 
communicate among themselves using UDP. A 
virtual or overlay network is formed by the 
participant nodes. Each node is identified by a 
number or node ID. The node ID serves not 
only as identification, but the Kademlia 
algorithm uses the node ID to locate values 
(usually file hashes or keywords). In fact, the 
node ID provides a direct map to file hashes 
and that node stores information on where to 
obtain the file or resource. When searching for 
some value, the algorithm needs to know the 
associated key and explores the network in 
several steps. Each step will find nodes that 
are closer to the key until the contacted node 
returns the value or no more closer nodes are 

mailto:Ivan.Klimek@cnl.tuke.sk


found. This is very efficient: Like many other 
DHTs, Kademlia contacts only O(log(n)) nodes 
during the search out of a total of n nodes in 
the system. Further advantages are found 
particularly in the decentralized structure, 
which clearly increases the resistance against 
a denial of service attack. Even if a whole set 
of nodes is flooded, this will have limited effect 
on network availability, which will recover itself 
by knitting the network around these "holes". 
[5] 
 
The BitTorrent DHT specification [6] mentions 
that instead of using trackers in the .torrent file 
a peer can be specified. This peer then 
supplies a list of other active peers and by that 
replaces the function of a tracker. In fact, this is 
replacing a single point of failure with another 
single point of failure. Further, it looks like [7] a 
default peer that is hardcoded in the client is 
always contacted even on torrents with a 
specified tracker. In uTorrent and in the 
mainline BitTorrent client it is 
router.bittorrent.com (this one is also 
mentioned in the official DHT specification) or 
router.utorrent.com respectively. Because 
BitTorrent is a commercial company, it cannot 
be guaranteed that filtering of content resp. 
legal actions against users won't occur. 
 
1.2 Peer Exchange 
 
Peer exchange (PEX) is a feature of the 
BitTorrent peer-to-peer protocol which, like 
trackers and DHT, can be utilized to gather 
peers. Using peer exchange, an existing peer 
is used to trade the information required to find 
and connect to additional peers. While it may 
improve (local) performance and robustness—
e.g. if a tracker is slow or even down—heavy 
reliance on PEX can lead to the formation of 
groups of peers who tend to only share 
information with each other, which may yield 
slow propagation of data through the network, 
due to few peers sending information to those 
outside the group they are in. For "trackerless" 
torrents, it is not clear if PEX provides any 
value since the mainline DHT can distribute 
load as necessary. Each DHT node acting as a 
tracker may store only a subset of the peers, 
but these are maximal subsets constrained 
only by DHT node load rather than by a single 
peer's view. Private torrents disable the DHT, 
and for this case, PEX might be useful 
provided the peer obtains enough peers from 
the tracker. [8] 
 
PEX like DHT needs an existing peer to gather 
other nodes to connect to. Although, there is 
no "default" peer like in DHT.  

1.3 Local Peer Discovery 
 
A peer with enabled Local peer discovery 
sends multicast messages, if there is another 
peer in the same multicast domain and it has 
the content identified by the infohash in the 
multicasted request it will reply to the sender. 
This mechanism works only on local segments 
as multicasts are usually filtered on the 
gateways, also speed limits do not apply on 
transfers between hosts discovered using 
Local Peer Discovery. 
 
2 TRACKERLESS TORRENT CACHING 
2.1 DHT caching 
 
Because of the protocol design and its usage 
of UDP, it is simple to detect and initialize a 
Man-in-the-Middle attack on DHT. The 
messages are always in the same format so 
the methods developed for intercepting HTTP 
tracker requests can be used out of the box. 
[1] This is also true when the protocol 
encryption is used, as it does not encrypt the 
DHT initialization messages.

1
  

 
2.2 Peer exchange 
 
PEX does not work without knowledge of some 
"prior" peer. With the control over DHT there is 
no reason why we should focus on it. 
 
2.3 Local peer discovery 
 
If the proxy cache will be placed on the same 
multicast domain as the clients, it is the easiest 
way how to publish the content. It just needs to 
listen for the multicasted requests. 
 
3 AVOIDING MONITORING 
 
BitTorrent is by no means an anonymous 
protocol, there are at least three ways how it is 
possible to identify what is the user 
downloading: 
 
 1) Every peer gets a list of other peers to 
which it then tries to connect 
 2) The tracker knows all the peers and 
what are they downloading 
 3) Eavesdropping on the network 
communication - BitTorrent communicates 
mostly in clear text, even with the protocol 
encryption turned on it is possible to determine 
who is downloading what because the protocol 
encryption was designed to obfuscate protocol 
recognition mechanism not to protect privacy. 
                                                           

1 This is primarely for backwards compatibility 

reasons. 



 
P2P proxy cache is able to defeat all this 
methods and guarantee almost full anonymity 
without the need to modify the protocol thus 
existing client SW can be used. 
(Full anonymity is also possible by minor 
additions) 
 1) In a network served by a proxy cache, 
the only visible peer is the proxy cache itself. 
 2) The original client's request never 
reaches the tracker, the same is true for the 
mentioned DHT "default peers". 
 3) With the proxy cache deployment 
client's traffic stays in the original ISP's 
network, e.g. only few hops to the nearest 
proxy cache. This massively reduces the 
chances for eavesdropping - which would need 
to be done directly by the peer's ISP. We will 
present a solution to make this bulletproof later 
too.    
 
4 LEGAL ISSUES 
 
Peer-to-Peer networks clearly represent a legal 
issue, numerous trials with the users of P2P 
systems or people behind the BitTorrent 
trackers are everyday in the news.  
 
Let’s summarize the facts:  
 

 Caching content as defined by the 
DMCA [9] is not illegal, even storing 
and relaying copyrighted content for 
the purposes of caching is not illegal 
[10].  

 The article 6 of IPRED
2
 gives the 

power to the interested party to apply 
for evidence regarding an infringement 
that lies in the hands of the other party 
to be presented. The only requirement 
is for that party to present “reasonably 
available evidence sufficient to support 
its claim” to courts. [11]  

 
Thus, according to our interpretation using 
caching as described it is possible to legally 
defeat current monitoring mechanism

3
 and by 

that protect P2P users as their activity can no 
longer be monitored. 
 
 
                                                           

2 Directive 2004/48/EC of the European 

Parliament and of the Council of 29 April 2004 

on the enforcement of intellectual property 

rights 

3 The author is not aware of any monitoring 

mechanism that could be used to gather 

sensitive information on users when caching as 

presented would be applied. 

5 CREATING AN ANONYMOUS 
 NETWORK 
 
Trackerless torrents represent a great progress 
for the whole protocol, but they are limited in 
ways described earlier. To enable them fully 
replace trackers and become more 
decentralized/secure, the P2P proxy cache 
would need to be deployed in larger scale and  
create a defacto Cached Content Delivery 
Network (CCDN) like the Coral CDN [12]. This 
would enable to create a set of almost nonstop 
available peers, which could share a common 
DHT table which would be enlarged with every 
new download. These nodes would be then 
used instead of the default DHT peers 
(mentioned earlier). It is logical that a point 
would come where people would start to add 
this nodes to their torrents as the default 
peers, this could be done using a dynamic 
DNS entry pointing to the nearest most optimal 
proxy cache for the given peer. This can but 
does not need to happen, without it the CCDN 
would function completely transparently. 
Further, when the CCDN would become 
unavailable, for whatever reasons, the original 
default peer can be still accessible creating 
another fallback option.  
 
With such acceptance/deployment of proxy 
caches, trackers would become obsolete. Their 
only role would be searching and holding the 
“.torrent” files. Both of these functions can be 
omitted with minor additions to the DHT 
protocol - so that it would support direct search 
in the DHT table/cloud. [13]  
 
Caching is not limited to be retro-active

4
, but it 

can be also pro-active. Cache every new 
content, only when it is not popular delete it. 
This would enable content to be shared much 
faster to great masses. This idea is not 
technically problematic, as at every moment 
the active amount of content represents only a 
fraction of the whole content.

5
 It is only a 

question of setting the limit of what is active / 
inactive and the available disk space. Also pro-
active approach would avoid completely any 
redundancy which is the key factor for caching.  
 
Similarity Enhanced Transfer in its easiest form 
can be used to avoid further redundancy that is 
                                                           

4   Caching content after it becomes popular. 
5 Lets call a active torrent only a torrent that has 

at least one seeder and leacher. In that case, only 

about 100 000 torrents of 925 914 registered on 

“tracker.thepiratebay.org“ is active. That means 

active content represents about 1/10 of all 

content provided.[14] 



caused by the same content (or same pieces 
of content) in different torrents. We say "in its 
easiest form" because to avoid adding 
complexity to the proxy cache code we aim to 
use only the SHA checksums of pieces and 
their relative order to detect the same content 
in different torrents. This in fact is enough 
information to detect duplicate content even if 
SHA collision can occur [15], because the 
longer the correct order of SHA hashes the 
bigger the probability of having discovered 
duplicate content. 
 
In some jurisdiction it may one day be 
necessary to provide logs for content being 
cached e.g. who provided the cache with what 
content. This may well happen to stop sharing 
illegal content. The proxy cache has to be able 
to support this request and provide the logs.  
 
A possible scenario: 
 

 A Law enforcement organization send 
a request to take down content with a 
given infohash 

 P2P proxy cache (all participating in 
the CCDN) take down the given 
infohash from its (their) database, so 
no new download of that content can 
occur, active downloads will continue, 
as it is technically impossible to stop 
them 

 because P2P proxy cache uses the 
ZFS file system

6
, the data are there, 

just the link in the database pointing to 
them was deleted 

 the original seeder - "author" of the 
content realizes that the content is no 
longer in cache (this can be automated 
via a robot) and  recreates the torrent, 
because the creation date/time is 
different from the original torrent the 
infohash will be different even that the 
data are the same 

 the search engines (e.g. trackers) 
update their databases

7
  

 as P2P proxy cache is a pro-active 
cache it detects new content and starts 
to download it, it detects it is the same 
content using our SET  implementation 
and recovers the needed blocks from 
the ZFS thus almost no downloading 

                                                           

6 ZFS supports natively the multi-layer storage 

system that P2P proxy cache needs to use [1], 

further ZFS does NOT delete any blocks, it 

always writes on new blocks. 

7 This means the .torrent files have to be used 

instantly after being downloaded else they can 

become obsolete. 

from the original seeder is needed 
 the content is available again; when 

automated this procedure can take 
only a few seconds - no one will even 
notice and the proxy cache has done 
what was requested by the law 
enforcement agency

8
 

 
P2P proxy cache is an automated system and 
it simply forwards the responsibility to the 
author - initial seeder of the torrent which can 
be connected using a secure connection 
(IPREDator [17] for example). It does protect 
ordinary people, keeps all the content always 
available, but still cooperates with all the legal 
authorities. 
 
6 OTHER POSSIBLE ADDITIONS 
 
As already mentioned, even when using a 
proxy cache, the user's traffic will need to get 
to the proxy cache through several hops in the 
ISP's network, which creates a possibility for 
eavesdropping. A possible solution would be to 
implement an SSL tunnel between the peer 
and the proxy cache. This, however, would 
require the modification of the client software. 
We plan to modificate an open source client 
and make the changes publicly available. 
Other possible approach would be to create a 
"loader" that could be started before the client 
software and create a tunnel to be used by the 
unmodified client. For example an limited VPN 
to the proxy cache, limited to BitTorrent traffic 
only. This would enable total anonymity with 
existing SW stack. However, by doing that the 
proxy cache would loose its transparency. A 
possible better approach would be to support 
implementing Friend-to-Friend (F2F) [18] 
features into the BitTorrent protocol. After their 
implementation into mainstream clients, the 
user could simply add the CCDN into his friend 
list. 
 
In networks where uploading is not an issue - 
like cable operators, or FTTH the proxy cache 
can operate like a relay to enhance the speed 
of content delivery in the local segment. This 
means, all the anonymity features would still 
be used but the peers would actively 
participate in content delivery thus keeping the 
basic idea of P2P networks alive. This would 
be very effective because it is lot easier and 
cost effective to pass through traffic than to 
read it from any kind of storage medium.  
                                                           

8 Trackers that accepted to filter content - like 

Mininova [16] have survived longer and with 

less trouble than trackers that ignored/refused 

such requests. 



A generally accepted rule of thumb is that 1 
hertz of CPU processing is required to send or 
receive 1 bit of TCP/IP [19]. For example 5 
Gbit/s (625 MB/s) of network traffic requires 5 
GHz of CPU Processing. This implies that 2 
entire cores of a 2.5 GHz multi-core processor 
will be required to handle the TCP/IP 
processing associated with 5 Gbit/s of TCP/IP 
traffic. Since Ethernet (10Ge in this example) is 
bidirectional it is possible to send and receive 
10 Gbit/s (for an aggregate throughput of 20 
Gbit/s). Using the 1 Hz/ bit rule this equates to 
8 - 2.5 GHz cores. (Few if any current day 
servers have a requirement to move 10 Gbit/s 
in both directions but not so long ago 1 Gbit/s 
full duplex was thought to be more than 
enough bandwidth.) Many of the CPU cycles 
used for TCP/IP processing are "freed up" by 
TCP/IP offload and may be used by the CPU 
(usually a server CPU) to perform other tasks 
such a file system processing (in a file server) 
or indexing (in a backup media server). In 
other words, a server with TCP/IP offload can 
do more server work than a server without 
TCP/IP Offload NICs. [20] 
 
Using such technique would enable the 
relaying of data in tens of gigabits per second 
spectrum. Caching would be used only to 
avoid downloading the same content from 
outside of the served network thus avoiding 
redundancy outside of the given segment.  
 
One day in the future, trackers won't be no 
more; technically the switch to a completely 
decentralized search is possible to do right 
now. The problem are the people, the process 
from what they know and use every day to 
searching directly from the client software has 
to be gentle. An example can be the Tribbler 
client [21] 
 
7 CONCLUSION 
 
This paper presented a few approaches that 
could possibly legally avoid current monitoring 
techniques and by that increase the Internet 
privacy. Caching of P2P traffic is an emerging 
technology, that if could integrate privacy 
features, would be beneficial not only to 
Internet Service Providers but to their 
customers too. We think that it is important to 
transparently update the already used 
protocols and not to design and try to create 
something new. That is why the P2P proxy 
cache works completely transparently on top of 
the BitTorrent protocol.  
 

 
 

References  
[1] I. Klimek. P2P proxy/cache. Computer 

Networks Laboratory, Technical University Kosice, 

December 2008. 

[2] Wikipedia, "The Pirate Bay Trial", 2009, 

[Online; accessed 12-June-2009], [Online], 

Available: 

http://en.wikipedia.org/wiki/The_Pirate_Bay_trial 

[3] Wikipedia, "Distributed hash table", 2009, 

[Online; accessed 12-June-2009], [Online], 

Available: 

http://en.wikipedia.org/wiki/Distributed_hash_table 

[4] CSAIL MIT, "Kademlia: A Peer to peer 

information system based on the XOR Metric", 

2002, [Online; accessed 12-June-2009], [Online], 

Available: 

http://pdos.csail.mit.edu/~petar/papers/maymounko

v-kademlia-lncs.pdf 

[5] Wikipedia, "Kademlia", 2009, [Online; accessed 

12-June-2009], [Online], Available: 

http://en.wikipedia.org/wiki/Kademlia 

[6] BitTorrent.org, "DHT Protocol", 2008, [Online; 

accessed 12-June-2009], [Online], Available: 

http://www.bittorrent.org/beps/bep_0005.html 

[7] BitTorrent.com, "Troubleshooting", 2009, 

[Online; accessed 12-June-2009], [Online], 

Available: 

http://www.bittorrent.com/btusers/guides/bittorrent-

user-manual/faq-frequently-asked-

questions/troubleshooting 

[8] Wikipedia, "Peer exchange", 2009, [Online; 

accessed 12-June-2009], [Online], Available: 

http://en.wikipedia.org/wiki/Peer_exchange 

[9] BitLaw, "17 USC 512, Limitations on liability 

relating to material online", 2005, [Online; accessed 

12-June-2009], [Online], Available: 

http://www.bitlaw.com/source/17usc/512.html 

[10] Wikipedia, "Field v. Google", 2009, [Online; 

accessed 12-June-2009], [Online], Available: 

http://en.wikipedia.org/wiki/Field_v._Google 

[11] Europa.eu, "DIRECTIVE 2004/48/EC OF 

THE EUROPEAN PARLIAMENT AND OF THE 

COUNCIL of 29 April 2004 on the enforcement of 

intellectual property rights", 2004, [Online; 

accessed 12-June-2009], [Online], Available: 

http://eur-

lex.europa.eu/pri/en/oj/dat/2004/l_195/l_19520040

602en00160025.pdf 

[12] Wikipedia, "Coral Content Distribution 

Network", 2009, [Online; accessed 12-June-2009], 

[Online], Available: 

http://en.wikipedia.org/wiki/Coral_Content_Distrib

ution_Network 

[13] Wikipedia, "Kad network", 2009, [Online; 

accessed 12-June-2009], [Online], Available: 

http://en.wikipedia.org/wiki/Kad_network 

[14] Torrentz.com, 

"http://tracker.thepiratebay.org/announce 100,000 - 

100,050 of 925 914", 2009, [Online; accessed 12-

June-2009], [Online], Available: 



http://www.torrentz.com/tracker_258334187520&p

=2000 

[15] Wikipedia, "SHA hash functions", 2009, 

[Online; accessed 12-June-2009], [Online], 

Available: http://en.wikipedia.org/wiki/SHA_1 

[16] Wikipedia, "Mininova", 2009, [Online; 

accessed 12-June-2009], [Online], Available: 

http://en.wikipedia.org/wiki/Mininova 

[17] Wikipedia, "IPREDator", 2009, [Online; 

accessed 12-June-2009], [Online], Available: 

http://en.wikipedia.org/wiki/IPREDator 

[18] Wikipedia, "Friend-to-friend", 2009, [Online; 

accessed 12-June-2009], [Online], Available: 

http://en.wikipedia.org/wiki/Friend-to-friend 

[19] A. Foong, T. Huff, H. Hum, J. Patwardhan, G. 

Regnier. TCP Performance re-visited. Proceedings 

of the International Symposium on Performance 

Analysis of Systems and Software (ISPASS) March 

2003, Austin, TX 

[20] Wikipedia, "TCP Offload Engine", 2009, 

[Online; accessed 12-June-2009], [Online], 

Available: 

http://en.wikipedia.org/wiki/TCP_Offload_Engine 

[21] Wikipedia, "Tribler", 2009, [Online; accessed 

12-June-2009], [Online], Available: 

http://en.wikipedia.org/wiki/Tribler 

 


